

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u> Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Table of contents

Review

01

Field

02

03

Vector Space

04

Linear Combination

05

Span-Linear Hull

Review

Complex Numbers

Sum and Products

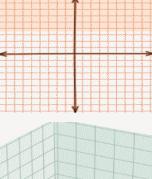
Hamid R. Rabiee & Maryam Ramezani

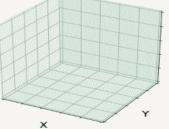
Tuple and Vector Space

Definition

A tuple is an ordered list of numbers. For example: $\begin{bmatrix} 1 \\ 2 \\ 32 \\ 10 \end{bmatrix}$ is a 4-tuple (a tuple with 4 elements).

$$\mathbb{R}^{2} = \left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 0.112\\\frac{2}{3} \end{pmatrix}, \begin{pmatrix} \pi\\e \end{pmatrix}, \dots \right\}$$
$$\mathbb{R}^{3} = \left\{ \begin{pmatrix} 17\\\pi\\2 \end{pmatrix}, \begin{pmatrix} 9\\-2\\\sqrt{2} \end{pmatrix}, \begin{pmatrix} 1\\22\\\sqrt{2} \end{pmatrix}, \dots \right\}$$





z

Hamid R. Rabiee & Maryam Ramezani

 \bigcirc

Numbers:

Real: Nearly any number you can think of is a Real Number!

 1
 12.38
 -0.8625
 3/4
 √2
 1998

Imaginary: When squared give a negative result.

The "unit" imaginary number (like 1 for Real Numbers) is "i", which is the square root of -1.

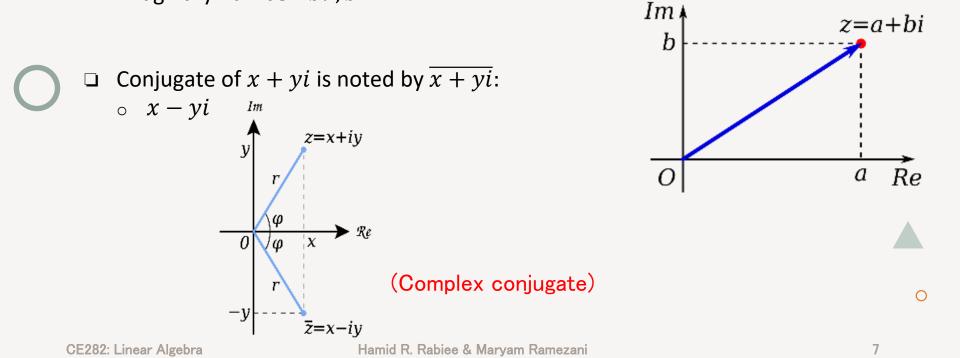
Examples of Imaginary Numbers:3i1.04i-2.8i3i/4 $(\sqrt{2})i$ 1998iAnd we keep that little "i" there to remind us we need to multiply by $\sqrt{-1}$

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

 \bigcirc

□ \mathbb{C} is a plane, where number (a + bi) has coordinates $\begin{bmatrix} a \\ b \end{bmatrix}$ □ Imaginary number: bi, $b \in \mathbb{R}$



□ Arithmetic with complex numbers (a + bi):

$$\Box (a+bi) + (c+di)$$

$$\Box (a+bi)(c+di)$$

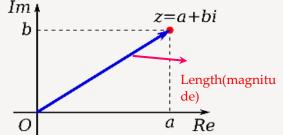
$$\Box \ \frac{a+bi}{c+di}$$

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd}{c^2+d^2} + \left(\frac{bc-ad}{c^2+d^2}\right)i$$

CE282: Linear Algebra

 \bigcirc

□ Length (magnitude): $||a + bi||^2 = \overline{(a + bi)}(a + bi) = a^2 + b^2$



Extra resource:

If you want to learn more about complex numbers, this video is recommended!

Binary Operations

What is a binary operation?

Hamid R. Rabiee & Maryam Ramezani

Binary Operations

Definition

Any function from $A \times A \rightarrow A$ is a binary operation.

Closure Law:

 A set is said to be closure under an operation (like addition, subtraction, multiplication, etc.) if that operation is performed on elements of that set and result also lies in set.

$$if \ a \in A, b \in A \rightarrow a * b \in A$$

 \cap

Binary Operations

Example

Ο

Is "+" a binary operator on natural numbers?
Is "x" a binary operator on natural numbers?
Is "-" a binary operator on natural numbers?
Is "/" a binary operator on natural numbers?

Field

Groups

Definition

A group G is a pair (S, \circ) , where S is a set and \circ is a binary operation on S such that:

- • is associative
- (Identity) There exists an element $e \in S$ such that:

 $e \circ a = a \circ e = a \quad \forall a \in S$

• (Inverses) For every $a \in S$ there is $b \in S$ such that:

$$a \circ b = b \circ a = e$$

If o is commutative, then G is called a commutative group!

CE282: Linear Algebra

Fields

Definition

A field F is a set together with <u>two</u> binary operations + and *, satisfying the following properties:

Associative

Commutative

Identity Inverses

1. (F,+) is a <u>commutative group</u>

2. (F-{0},*) is a commutative group

3. The distributive law holds in F:

$$(a + b) * c = (a * c) + (b * c)$$

 $a * (b + c) = (a * b) + (a * c)$

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

 \cap

Fields

• A field in mathematics is a set of things of elements (not necessarily numbers) for which the basic arithmetic operations (addition, subtraction, multiplication, division) are defined: (F,+,.)

Example

$$(\mathbb{R}; +, .)$$
 and $(\mathbb{Q}; +, .)$ serve as examples of fields.

• Field is a set (F) with two binary operations (+ , .) satisfying following properties:

 \cap

0

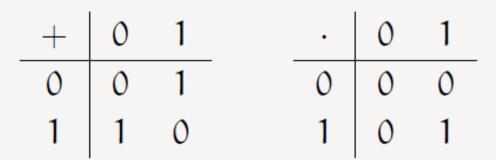
Fields

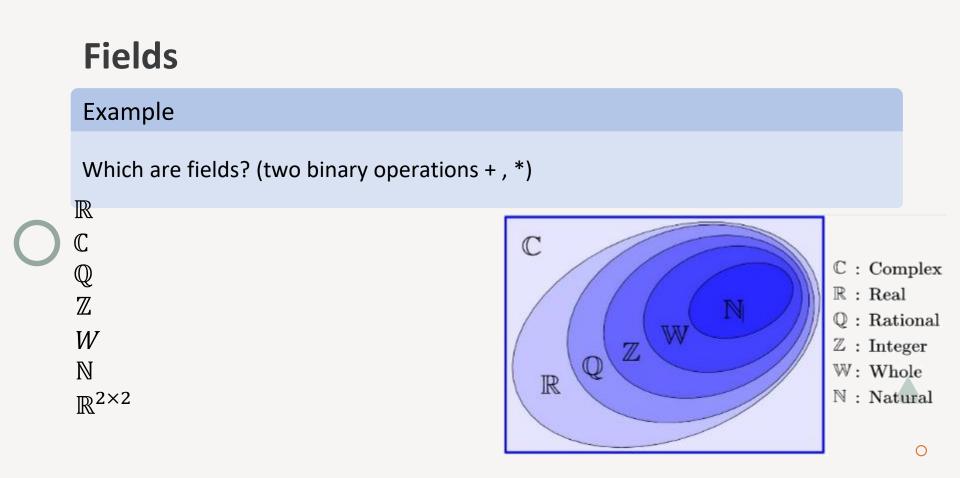
Properties		Binary	Binary Operations	
		Addition (+)	Multiplication (.)	
	(بسته بودن) Closure	$\exists a + b \in F$	$\exists a. b \in F$	
	(شرکتپذیری) Associative	a + (b + c) = (a + b) + c	a.(b.c) = (a.b).c	
	Commutative (جابەجايىپذيرى)	a+b=b+a	a.b = b.a	
	Existence of identity $e \in F$	a + e = a = e + a	a.e = a = e.a	
	Existence of inverse: For each a in F there must exist b in F	a+b=e=b+a	a.b = e = b.a For any nonzero a	
	Multiplication is distributive over addition			
	a. (b + c) = a. b + a. c (a + b). c = a. c + b. c			
CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 17				

Fields

Example

Set $B = \{0,1\}$ under following operations is a field?





- Building blocks of linear algebra.
- A non-empty set V with field F (most of time R or C) forms a vector space with two operations:
 - 1. + : Binary operation on V which is V x V \rightarrow V 2. . : F x V \rightarrow V

Note

In our course, by **default**, field is **R** (real numbers).

Definition

A vector space over a field F is the set V equipped with two operations: (V, F, +, .)

- i. Vector addition: denoted by "+" adds two elements $x, y \in V$ to produce another element $x + y \in V$
- ii. Scalar multiplication: denoted by "." multiplies a vector $x \in V$ with a scalar $\alpha \in F$ to produce another vector α . $x \in V$ We usually omit the "." and simply write this vector as αx

Vector Space Properties

Addition of vector space (x + y)

Commutative $x + y = y + x \ \forall x, y \in V$

Associative $(x + y) + z = x + (y + z) \forall x, y, z \in V$

Additive identity $\exists \mathbf{0} \in V$ such that $x + \mathbf{0} = x, \forall x \in V$

Additive inverse $\exists (-x) \in V$ such that $x + (-x) = 0, \forall x \in V$

Vector Space Properties

• Action of the scalars field on the vector space (αx)

 $\Box \quad \text{Associative} \quad \alpha(\beta x) = (\alpha \beta) x \qquad \forall \alpha, \beta \in F; \forall x \in V$

Distributive over scalar addition: $(\alpha + \beta)x = \alpha x + \beta x$ $\forall \alpha, \beta \in F; \forall x \in V$ vector addition: $\alpha(x + y) = \alpha x + \alpha y$ $\forall \alpha \in F; \forall x, y \in V$

 $\Box \quad \text{Scalar identity} \qquad 1x = x \qquad \forall x \in V$

Ο

Theorem

Every vector space has a unique additive identity.

Every $v \in V$ has a unique additive inverse.

Proof

Example

Let V be the set of all real numbers with the operations $u \oplus v = u - v$, \oplus is an ordinary subtraction) and $c \odot u = cu(\odot$ is an ordinary multiplication). Is V a vector space? If it's not, which properties fail to hold?

 \cap

Example: Fields are R in this example:

- The n-tuple space,
- The space of m x n matrices
- The space of functions:

(f + g)(x) = f(x) + g(x) and (cf)(x) = cf(x)

f(t) = 1 + sin(2t) and g(t) = 2 + 0.5t

- The space of polynomial functions over a field F:

$$p_n(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

Vector Space of functions

• Function addition and scalar multiplication

(f+g)(x) = f(x) + g(x) and (af)(x) = af(x)

Non-empty set X and any field F $F^{X} = \{f: X \to F\}$

Example

- Set of all polynomials with real coefficients
- Set of all real-valued continuous function on [0,1]
- Set of all real-valued function that are differentiable on [0,1]

Vector Space of polynomials

P_n (\mathbb{R}): Polynomials with max degree (n)

- Vector addition
- Scalar multiplication
- And other 8 properties!

Example

Which are vector spaces?

- \Box Set \mathbb{R}^n over \mathbb{R}
- \Box Set $\mathbb C$ over $\mathbb R$
- \Box Set \mathbb{R} over \mathbb{C}
- \Box Set $\mathbb Z$ over $\mathbb R$

lacksquare Set of all polynomials with coefficient from ${\mathbb R}$ over ${\mathbb R}$

- lacksquare Set of all polynomials of degree at most n with coefficient from $\mathbb R$ over $\mathbb R$
- \Box Matrix: $M_{m,n}(\mathbb{R})$ over \mathbb{R}
- **□** Function: $f(x): x \to \mathbb{R}$ over \mathbb{R}

Conclusion

The operations on field F are:

- + : $F \times F \rightarrow F$
- $x : F \times F \rightarrow F$

The operations on a vector space V over a field F are:

- + : $V \times V \rightarrow V$
- $\bullet \quad .: F \mathrel{x} V \rightarrow V$

32

0

Linear Combination

Linear Combinations

• The linear combinations of m vectors $a_1, \dots a_m$, each with size n is:

$$\beta_1 a_1 + \dots + \beta_m a_m$$

where $\beta_1, ..., \beta_m$ are scalars and called the coefficients of the linear combination

• <u>Coordinates</u>: We can write any n-vector b as a linear combination of the standard unit vectors, as:

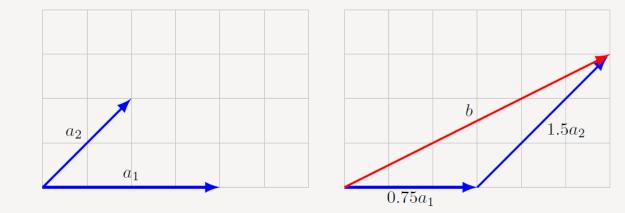
$$b = b_1 e_1 + \dots + b_n e_n$$

• Example: What are the coefficients and combination for this vector?

$$\begin{bmatrix} -1\\ 3\\ 5 \end{bmatrix}$$

 \cap

Linear Combinations



Left. Two 2-vectors a_1 and a_2 . Right. The linear combination $b = 0.75a_1 + 1.5a_2$

Special Linear Combinations

- Sum of vectors
- □ Average of vectors

CE282: Linear Algebra

Span – Linear Hull

Span or linear hull

Definition

If $v_1, v_2, v_3, ..., v_p$ are in \mathbb{R}^n , then the set of all linear combinations of $v_1, v_2, ..., v_p$ is denoted by Span $\{v_1, v_2, ..., v_p\}$ and is called the **subset** of \mathbb{R}^n spanned (or generated) by $v_1, v_2, ..., v_p$.

That is, Span{ v_1 , v_2 , ..., v_p } is the collection of all vectors that can be written in the form:

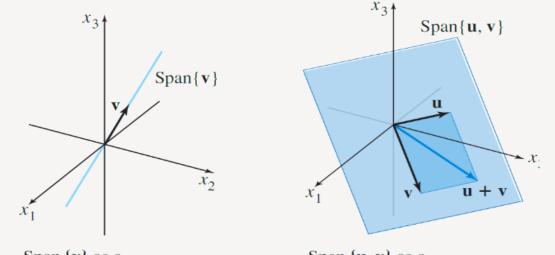
$$c_1v_1 + c_2v_2 + \dots + c_pv_p$$

th c_1, c_2, \dots, c_n being scalars.

W

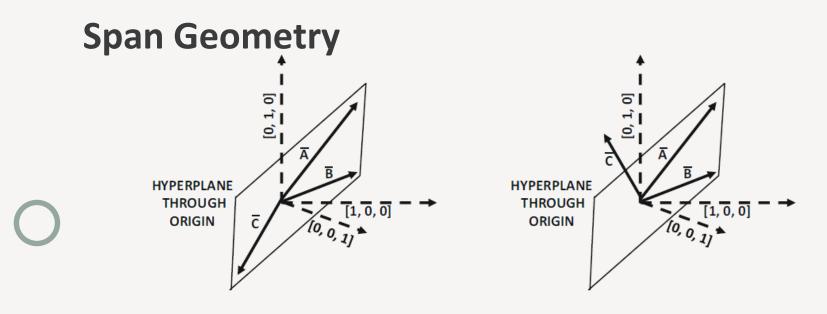
Span Geometry

v and u are non-zero vectors in \mathbb{R}^3 where v is not a multiple of u



Span {**v**} as a line through the origin.

Span {**u**, **v**} as a plane through the origin.



(a) $\operatorname{Span}(\{\overline{A}, \overline{B}\}) = \operatorname{Span}(\{\overline{A}, \overline{B}, \overline{C}\})$ $\operatorname{Span}(\{\overline{A}, \overline{B}, \overline{C}\}) = \operatorname{All}$ vectors on hyperplane (b) $\operatorname{Span}(\{\overline{A}, \overline{B}\}) \neq \operatorname{Span}(\{\overline{A}, \overline{B}, \overline{C}\})$ $\operatorname{Span}(\{\overline{A}, \overline{B}, \overline{C}\}) = \operatorname{All vectors in } \mathcal{R}^3$

Figure 2.6: The span of a set of linearly dependent vectors has lower dimension than the number of vectors in the set

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

39

Ο

Span or linear hull

Example

□ Is vector b in Span { v_1 , v_2 , ..., v_p }
□ Is vector v_3 in Span { v_1 , v_2 , ..., v_p }
□ Is vector 0 in Span { v_1 , v_2 , ..., v_p }
□ Span of polynomials: { $(1 + x), (1 - x), x^2$ }?
□ Is b in Span { a_1, a_2 }?

$$a_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, a_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}, b = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$$

Resources

- □ Kenneth Hoffman and Ray A. Kunze. Linear Algebra. PHI Learning, 2004.
- David C. Lay, Steven R. Lay, and Judi J. McDonald. Linear Algebra and Its Applications. Pearson, 2016.
- Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2016.

 \cap