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Complex Numbers
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Tuple and Vector Space

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

❏ A tuple is an ordered list of numbers.

❏ For example: 

1
2
32
10

is a 4-tuple (a tuple with 4 elements).

ℝ2 =
1
2

,
0.112
2

3

,
𝜋
𝑒

, …

ℝ3 =
17
𝜋
2

,
9
−2

2

,
1
22
2

,…
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Review: Complex Numbers

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Numbers:

• Real: Nearly any number you can think of is a Real Number!

• Imaginary: When squared give a negative result.

The “unit” imaginary number (like 1 for Real Numbers) is “𝒊”, which is the square root of −1.
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Review: Complex Numbers

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

❏ ℂ is a plane, where number (𝑎 + 𝑏𝑖) has coordinates 
𝑎
𝑏

❏ Imaginary number: 𝑏𝑖 , 𝑏 ∈ ℝ

❏ Conjugate of 𝑥 + 𝑦𝑖 is noted by 𝑥 + 𝑦𝑖:
o 𝑥 − 𝑦𝑖

(Complex conjugate)
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❏ Arithmetic with complex numbers 𝑎 + 𝑏𝑖 :

❏ 𝑎 + 𝑏𝑖 + (𝑐 + 𝑑𝑖)

❏ (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)

❏
𝑎+𝑏𝑖

𝑐+𝑑𝑖

Review: Complex Numbers

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
=

(𝑎 + 𝑏𝑖)(𝑐 − 𝑑𝑖)

(𝑐 + 𝑑𝑖)(𝑐 − 𝑑𝑖)
=

𝑎𝑐 + 𝑏𝑑

𝑐2 + 𝑑2
+

𝑏𝑐 − 𝑎𝑑

𝑐2 + 𝑑2
𝑖
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❏ Length (magnitude):

● Inner Product: 

❏ Real: 

❏ Complex: 

Review: Complex Numbers

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Extra resource:

If you want to learn more about complex numbers, this video is recommended!

< 𝑥, 𝑦 > = 𝑥1𝑦1 + 𝑥2𝑦2 + …+ 𝑥𝑛𝑦𝑛

< 𝑥, 𝑦 > = 𝑥1𝑦1 + 𝑥2𝑦2 + …+ 𝑥𝑛𝑦𝑛

| 𝑎 + 𝑏𝑖 |2 = 𝑎 + 𝑏𝑖 𝑎 + 𝑏𝑖 = 𝑎2 + 𝑏2

Length(magnitu
de)

https://www.youtube.com/watch?v=cEwmlyaxLKQ
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Binary Operations

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Binary Operations

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

Any function from  A x A → A   is a binary operation.

❏ Closure Law: 

❏ A set is said to be closure under an operation (like addition, 
subtraction, multiplication, etc.) if that operation is performed on 
elements of that set and result also lies in set.

𝑖𝑓 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 → 𝑎 ∗ 𝑏 ∈ 𝐴
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Binary Operations
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Example

❏ Is “+” a binary operator on natural numbers?
❏ Is “x” a binary operator on natural numbers?
❏ Is “-” a binary operator on natural numbers?
❏ Is “/” a binary operator on natural numbers?
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A group 𝐺 is a pair (𝑆,∘), where 𝑆 is a set and ∘ is a binary operation on 𝑆 such that:

● ∘ is associative

● (Identity) There exists an element e ∈ 𝑆 such that:

𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 ∀𝑎 ∈ 𝑆

● (Inverses) For every 𝑎 ∈ 𝑆 there is b ∈ 𝑆 such that: 

If ∘ is commutative, then G is called a commutative group!

Groups

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 = 𝑒
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Fields
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Definition

A field F is a set together with two binary operations + and *, satisfying the 
following properties:

1. (F,+) is a commutative group

2. (F-{0},*) is a commutative group

3. The distributive law holds in F:

● Associative
● Identity
● Inverses
● Commutative

𝑎 + 𝑏 ∗ 𝑐 = 𝑎 ∗ 𝑐 + (𝑏 ∗ 𝑐)

𝑎 ∗ 𝑏 + 𝑐 = 𝑎 ∗ 𝑏 + (𝑎 ∗ 𝑐)
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● A field in mathematics is a set of things of elements (not necessarily 
numbers) for which the basic arithmetic operations (addition, subtraction, 
multiplication, division) are defined: (F,+,.)

● Field is a set (F) with two binary operations (+ , .) satisfying following 
properties:

Fields

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

(ℝ; +, .) and (ℚ; +, .) serve as examples of fields.
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Fields

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Properties Binary Operations

Addition (+) Multiplication (.)

Closure ( بسته بودن) ∃𝑎 + 𝑏 ∈ 𝐹 ∃𝑎. 𝑏 ∈ 𝐹

Associative (شرکت پذیری) 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 𝑎. (𝑏. 𝑐) = (𝑎. 𝑏). 𝑐

Commutative  
(جابه جایی پذیری)

𝑎 + 𝑏 = 𝑏 + 𝑎 𝑎. 𝑏 = 𝑏. 𝑎

Existence of identity
e ∈ 𝐹

𝑎 + 𝑒 = 𝑎 = 𝑒 + 𝑎 𝑎. 𝑒 = 𝑎 = 𝑒. 𝑎

Existence of inverse: For each 𝑎 in F 
there must exist 𝑏 in 𝐹

𝑎 + 𝑏 = 𝑒 = 𝑏 + 𝑎 𝑎. 𝑏 = 𝑒 = 𝑏. 𝑎
F𝑜𝑟 𝑎𝑛𝑦 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑎

Multiplication is distributive over addition
𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐
(𝑎 + 𝑏). 𝑐 = 𝑎. 𝑐 + 𝑏. 𝑐
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Fields

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

Set 𝐵 = {0,1} under following operations is a field?
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Fields

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

Which are fields? (two binary operations + , *)

ℝ
ℂ
ℚ
ℤ

𝑊
ℕ

ℝ2×2
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● Building blocks of linear algebra.

● A non-empty set V with field F (most of time R or C) forms a vector space 

with two operations:

1. + : Binary operation on V which is V x V → V

2. .  : F x V → V 

Vector Space

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Note

In our course, by default, field is R (real numbers).
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Vector Space

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

A vector space over a field F is the set V equipped with two operations: (𝑉, 𝐹, +, . )

i. Vector addition: denoted by “+” adds two elements 𝑥, 𝑦 ∈ 𝑉 to produce
another element 𝑥 + 𝑦 ∈ 𝑉

ii. Scalar multiplication: denoted by “.” multiplies a vector       
with a scalar             to produce another vector             .  We usually omit the “.” 
and simply write this vector as       

𝑥 ∈ 𝑉

𝛼 ∈ 𝐹 𝛼. 𝑥 ∈ 𝑉
𝛼𝑥
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❑ Addition of vector space (𝑥 + 𝑦)

❑ Commutative 𝑥 + 𝑦 = 𝑦 + 𝑥 ∀𝑥, 𝑦 ∈ 𝑉

❑ Associative (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑉

❑ Additive identity ∃𝟎 ∈ 𝑉 such that 𝑥 + 𝟎 = 𝑥, ∀𝑥 ∈ 𝑉

❑ Additive inverse ∃(−𝑥) ∈ 𝑉 such that 𝑥 + (−𝑥) = 0, ∀𝑥 ∈ 𝑉

Vector Space Properties

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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❑ Action of the scalars field on the vector space  (𝛼𝑥)
❑ Associative      𝛼 𝛽𝑥 = 𝛼𝛽 𝑥 ∀𝛼, 𝛽 ∈ 𝐹; ∀𝑥 ∈ 𝑉

❑ Distributive over    ……

scalar addition:     𝛼 + 𝛽 𝑥 = 𝛼𝑥 + 𝛽𝑥 ∀𝛼, 𝛽 ∈ 𝐹; ∀𝑥 ∈ 𝑉

vector addition:    𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦 ∀𝛼 ∈ 𝐹; ∀𝑥, 𝑦 ∈ 𝑉

❑ Scalar identity 1𝑥 = 𝑥 ∀𝑥 ∈ 𝑉

Vector Space Properties

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Vector Space

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Proof

Theorem

Every vector space has a unique additive identity.

Every 𝑣 ∈ 𝑉 has a unique additive inverse. 
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Vector Space

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

Let V be the set of all real numbers with the operations                                , ⊕ is an 
ordinary subtraction) and                       (     is an ordinary multiplication). 
Is V a vector space? If it’s not, which properties fail to hold?

𝑢 ⊕ 𝑣 = 𝑢 − 𝑣
𝑐 ⊡ 𝑢 = 𝑐𝑢 ⊡
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Vector Space

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example: Fields are R in this example:

- The n-tuple space, 
- The space of m x n matrices
- The space of functions:

(f + g)(x) = f(x) + g(x)     and    (cf)(x) = cf(x)

f(t) = 1 + sin(2t) and  g(t) = 2 + 0.5t

- The space of polynomial functions over a field F:

𝑝𝑛 𝑡 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + …+ 𝑎𝑛𝑡

𝑛
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● Function addition and scalar multiplication

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) 𝑎𝑛𝑑 (𝑎𝑓)(𝑥) = 𝑎𝑓(𝑥)

Vector Space of functions

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

- Set of all polynomials with real coefficients

- Set of all real-valued continuous function on [0,1]

- Set of all real-valued function that are differentiable on [0,1]

Non-empty set X and any field F                              𝐹𝑥 = {𝑓: 𝑋 → 𝐹}
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𝑃𝑛 (ℝ): Polynomials with max degree (n)

● Vector addition

● Scalar multiplication

● And other 8 properties!

Vector Space of polynomials

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Vector Space

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

Which are vector spaces?

❑ Set ℝ𝑛 over ℝ
❑ Set ℂ over ℝ
❑ Set ℝ over ℂ
❑ Set ℤ over ℝ
❑ Set of all polynomials with coefficient from ℝ over ℝ
❑ Set of all polynomials of degree at most 𝑛 with coefficient from ℝ over ℝ
❑ Matrix: 𝑀𝑚,𝑛(ℝ) over ℝ

❑ Function: 𝑓 𝑥 : 𝑥 ⟶ ℝ over ℝ



32

The operations on field F are:

● + : F x F → F

● x : F x F → F

The operations on a vector space V over a field F are:

● + : V x V → V

● . : F x V → V

Conclusion

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
32
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● The linear combinations of 𝑚 vectors 𝑎1, … 𝑎𝑚, each with size 𝑛 is:

𝛽1𝑎1 +⋯+ 𝛽𝑚𝑎𝑚
where 𝛽1, … , 𝛽𝑚 are scalars and called the coefficients of the linear 

combination

● Coordinates: We can write any n-vector b as a linear combination of the 

standard unit vectors, as:

𝑏 = 𝑏1𝑒1 +⋯+ 𝑏𝑛𝑒𝑛
○ Example: What are the coefficients and combination for this vector?  

Linear Combinations

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Linear Combinations

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Special Linear Combinations

❑ Sum of vectors

❑ Average of vectors
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Span or linear hull
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Definition

If 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑝 are in ℝ𝑛, then the set of all linear combinations 

of 𝑣1 , 𝑣2, … , 𝑣𝑝 is denoted by Span {𝑣1 , 𝑣2, … , 𝑣𝑝 } and is called the subset 

of  ℝ𝒏 spanned (or generated) by 𝑣1 , 𝑣2, … , 𝑣𝑝.

That is, Span{𝑣1 , 𝑣2, … , 𝑣𝑝} is the collection of all vectors that can be 

written in the form:

𝑐1𝑣1 + 𝑐2𝑣2 + …+ 𝑐𝑝𝑣𝑝
with 𝑐1, 𝑐2, … , 𝑐𝑝 being scalars.
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v and u are non-zero vectors in        where v is not a multiple of u

Span Geometry

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

ℝ3
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Span Geometry

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Span or linear hull

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

❏ Is vector 𝑏 in Span {𝑣1 , 𝑣2, … , 𝑣𝑝}

❏ Is vector 𝑣3 in Span {𝑣1 , 𝑣2, … , 𝑣𝑝}

❏ Is vector 0 in Span {𝑣1 , 𝑣2, … , 𝑣𝑝}
❏ Span of polynomials: {(1 + 𝑥), (1 − 𝑥), 𝑥2}?
❏ Is 𝑏 in Span {𝑎1, 𝑎2} ?

𝑎1 =
1
−2
3

, 𝑎2 =
5

−13
−3

, 𝑏 =
−3
8
1
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